Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
the acceleration or the next force acting on the body is constant
Answer:
Light of a shorter wavelength should be used.
Explanation:
This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .
The experiments that have been carried out show that <u>increasing or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.
And a higher frequency corresponds to a shorter wavelength according to the equation:

(where
is frequency,
the speed of light, and
the wavelength)
So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.
Answer:
149 m
Explanation:
The distances across the lake is forming a triangle.
let the distance between the point and the left side be 'x'
and the distance between the point and the right be 'y'
and the distance across the lake be 'z' and the angle opposite to 'z' be 'Z' given:
∠Z = 83°
x = 105 m
y = 119 m
Now, applying the Law of Cosines, we get
z² = x² + y² - 2xycos(Z)
Substituting the values in the above equation, we get
z² = 105² + 119² - 2×105×119×cos(83°)
or
z = √22140.48
or
z = 148.796 m ≈ 149 m
The point is 149 m across the lake