Answer: A herbivore.
Explanation:
A herbivore would be a top consumer in a food chain because they are primary consumers which leads you to secondary consumers who are carnivores to make sure they don't get to over populated and keep balance.
 
        
             
        
        
        
Answer: a, c, and g
Explanation:
Buoyant Force is an upward force acting on submerged object equal to weight of fluid displaced by the submerged object.
If no part is submerged (V = 0) that is volume. Therefore there is Zero Buoyant Force.
Fully submerged produces greatest buoyant force since greatest amount of fluid was displaced.
Whenever it is fully submerged it will have the greatest buoyant force.
Buoyant Force DOES NOT Depend on Depth
A fully submerged object displaces its volume in fluid
A floating object displaces its weight in fluid.
 
        
             
        
        
        
Answer:
17.55 m/s²
Explanation:
Parameters given:
Mass of Krypton, M = 7.6 * 10^23 kg
Radius, R = 1.7 * 10^6 m
Gravitational constant, G = 6.6726 * 10^(-11) Nm²/kg²
Acceleration due to gravity of planet of mass M is given as:
g = GM/R²
Since the object is close to the surface of Krypton, we can say that the distance from the Centre of Krypton is the radius of the planet Krypton. 
Therefore, 
g = (6.6726 * 10^(-11) * 7.6 * 10^23)/(1.7 * 10^6)²
g = 17.55 m/s²
 
        
             
        
        
        
Explanation:
Clear rendering reads;
"Make a table, like the one in the example, with the results obtained in the tests you carried out in previous activities. Then answer: What do these results indicate regarding your physical condition and how do they relate to your health? From your answers, consider the challenge of improving your physical condition by maintaining or improving your exercise routine or permanent practice of physical activity".
So the incomplete text above it seems you've been instructed to perform an experiment and then state your result/analysis.
 
        
             
        
        
        
Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity 
So before the collision: 
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s