Answer:
786.6 N
Explanation:
mass of car, m = 912 kg
initial velocity of car, u = 31.5 m/s
final velocity of car, v = 24.6 m/ s
time, t = 8 s
Let a be the acceleration of the car
Use first equation of motion
v = u + a t
24.6 = 31.5 + a x 8
a = - 0.8625 m/s^2
Force, F = mass x acceleration
F = 912 x 0.8625
F = 786.6 N
Thus, the force on the car is 786.6 N.
The kinetic energy with which the hammer strikes the ground
is exactly the potential energy it had at the height from which it fell.
Potential energy is (mass) x (gravity) x (height) .... directly proportional
to height.
Starting from double the height, it starts with double the potential
energy, and it reaches the bottom with double the kinetic energy.
You would want it to be greater than D. friction force
It needs be greater than the friction applied to it.
Answer:
a) 17 km
b) 9 km
Explanation:
The distance is the length of the path.
A to C: 5 km
B to C: 4 km
C to B: 4 km
B to C: 4 km
Total distance = 5 km + 4 km + 4 km + 4 km = 17 km
Displacement is the difference between the starting point and ending point.
Displacement = 9 km − 0 km = 9 km
Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.