Answer:
Scientific Method.
Explanation:
A scientific method is basically a method or a process when you conduct an experiment. Normally, the process goes like this:
1. You make like a question or something that you want to investigate, it's like the aim of the experiment.
2. You make an experiment and a hypothesis. A hypothesis is basically a guess on how the results of the experiment would turn out. You don't have to be correct for the hypothesis since there is no right or wrong answer.
3. Conduct the experiment. I don't think this needs a detailed explanation since experiments vary from one another.
4. Collect results. The data you collect come in different ways based on your experiment, but it is crucial you get data so that you can answer your question in 1.
5. Make inferences. You can't directly get a conclusion or answer from the results, so inferences are needed.
6. Craft a conclusion or answer. This is the final step when conducting an experiment and the part where you have the answer you needed when you conducted the experiment :)
[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.
The molarity of formic acid is 100 mM or
. The dissociation reaction of formic acid is as follows:

The expression for dissociation constant of the reaction will be:
![K_{a}=\frac{[HCOO^{-}][H^{+}]}{[HCOOH]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BHCOOH%5D%7D)
Rearranging,
![[HCOO^{-}]=\frac{K_{a}[HCOOH]}{[H^{+}]}](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7BK_%7Ba%7D%5BHCOOH%5D%7D%7B%5BH%5E%7B%2B%7D%5D%7D)
Here, pH of solution is 4.15 thus, concentration of hydrogen ion will be:
![[H^{+}]=10^{-pH}=10^{-4.15}=7.08\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-4.15%7D%3D7.08%5Ctimes%2010%5E%7B-5%7DM)
Similarly,
thus,

Putting the values,
![[HCOO^{-}]=\frac{(1.78\times 10^{-4}M)(100\times 10^{-3}M)}{(7.08\times 10^{-5}M}=0.2511 M](https://tex.z-dn.net/?f=%5BHCOO%5E%7B-%7D%5D%3D%5Cfrac%7B%281.78%5Ctimes%2010%5E%7B-4%7DM%29%28100%5Ctimes%2010%5E%7B-3%7DM%29%7D%7B%287.08%5Ctimes%2010%5E%7B-5%7DM%7D%3D0.2511%20M)
Therefore, the concentration of formate will be 0.2511 M.
Answer:
variable: not consistent or having a fixed pattern; liable to change.
Explanation:
If 30 grams of KCl is dissolved at 10°C, 14 g of KCl should be added to make a saturated solution at 60 °C.
<h3>What is a saturated solution?</h3>
A saturated solution is a solution in which there is so much solute that if there was any more, it would not dissolve. Its concentration is the same as the solubility at that temperature.
- Step 1. Calculate the mass of water.
At 10 °C, the solubility is 31.2 g KCl/100 g H₂O.
30 g KCl × 100 g H₂O/31.2 g KCl = 96 g H₂O
- Step 2. Calculate the mass of KCl required to prepare a saturated solution at 60 °C.
At 60 °C, the solubility is 45.8 g KCl/100 g H₂O.
96 g H₂O × 45.8 g KCl/100 g H₂O = 44 g KCl
- Step 3. Calculate the mass of KCl that must be added.
44 g - 30 g = 14 g
If 30 grams of KCl is dissolved at 10°C, 14 g of KCl should be added to make a saturated solution at 60 °C.
Learn more about saturated solutions here: brainly.com/question/24564260