Answer:
The lowest possible frequency of sound for which this is possible is 1307.69 Hz
Explanation:
From the question, Abby is standing 5.00m in front of one of the speakers, perpendicular to the line joining the speakers.
First, we will determine his distance from the second speaker using the Pythagorean theorem
l₂ = √(2.00²+5.00²)
l₂ = √4+25
l₂ = √29
l₂ = 5.39 m
Hence, the path difference is
ΔL = l₂ - l₁
ΔL = 5.39 m - 5.00 m
ΔL = 0.39 m
From the formula for destructive interference
ΔL = (n+1/2)λ
where n is any integer and λ is the wavelength
n = 1 in this case, the lowest possible frequency corresponds to the largest wavelength, which corresponds to the smallest value of n.
Then,
0.39 = (1+ 1/2)λ
0.39 = (3/2)λ
0.39 = 1.5λ
∴ λ = 0.39/1.5
λ = 0.26 m
From
v = fλ
f = v/λ
f = 340 / 0.26
f = 1307.69 Hz
Hence, the lowest possible frequency of sound for which this is possible is 1307.69 Hz.
The central angle of a circle is 360° or 2π radians.
Therefore
1 radian = (360 degrees)/(2π radians) = 180/π degrees/radian.
4 radians = (4 radians)*(180/π degrees/radian) = 229.18 degrees.
Answer: C. 229.2°
<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.
A classic puzzle...
She either kicked it at a wall <em>exactly</em><em /> 10 foot in front of her, where the ball rebounded off the wall.
Or, she kicked the ball straight up, vertically, at a <em>90 degree angle,</em> where due to the law of gravity, which states that anything that goes up must come down, when the soccer ball reaches exactly 10 feet, it falls back down.
(Note: This is nearly impossible to achieve -- exactly 10 feet.)
Answer:
Psm = 30.66 [Psig]
Explanation:
To solve this problem we will use the ideal gas equation, recall that the ideal gas state equation is always worked with absolute values.
P * v = R * T
where:
P = pressure [Pa]
v = specific volume [m^3/kg]
R = gas constant for air = 0.287 [kJ/kg*K]
T = temperature [K]
<u>For the initial state</u>
<u />
P1 = 24 [Psi] + 14.7 = 165.47[kPa] + 101.325 = 266.8 [kPa] (absolute pressure)
T1 = -2.6 [°C] = - 2.6 + 273 = 270.4 [K] (absolute Temperature)
Therefore we can calculate the specific volume:
v1 = R*T1 / P1
v1 = (0.287 * 270.4) / 266.8
v1 = 0.29 [m^3/kg]
As there are no leaks, the mass and volume are conserved, so the volume in the initial state is equal to the volume in the final state.
V2 = 0.29 [m^3/kg], with this volume and the new temperature, we can calculate the new pressure.
T2 = 43 + 273 = 316 [K]
P2 = R*T2 / V2
P2 = (0.287 * 316) / 0.29
P2 = 312.73 [kPa]
Now calculating the manometric pressure
Psm = 312.73 -101.325 = 211.4 [kPa]
And converting this value to Psig
Psm = 30.66 [Psig]