Metals is found on the left side of the table and the nonmetals is on the top right.
A bowling ball weighing 7 pounds
Answer:A mole is an arbitrary number of molecules in a single unit - refer to avogadro's number. Essentially, 1 mole is 6.022x10^23 molecules for ALL molecules or atoms, however one must remember that not all atoms/molecules are the same size, this is where mass comes into play. When you measure out 2 grams of carbon powder, there will be a lot more molecules present than if you weighed out 2 grams of thorium powder; this is because carbon is much smaller - kind of like a car filled with clowns, one given car can hold a lot of small clowns but only a few big ones; so the same volume is occupied but the amount of substance (clowns) varies on their own size. The arbitrary mass (relative to the hydrogen atom) for a molecule is the sum of its atomic components' atomic masses; e. g. C2H6's will have 2x12.00 (carbon) + 6x1.01 (hydrogen) = ~30 grams / mole.
Explanation:
Missing in your question Ka2 =6.3x10^-8
From this reaction:
H2SO3 + H2O ↔ H3O+ + HSO3-
by using the ICE table :
H2SO3 ↔ H3O + HSO3-
intial 0.6 0 0
change -X +X +X
Equ (0.6-X) X X
when Ka1 = [H3O+][HSO3-]/[H2SO3]
So by substitution:
1.5X10^-2 = (X*X) / (0.6-X) by solving this equation for X
∴ X = 0.088
∴[H2SO3] = 0.6 - 0.088 = 0.512
[HSO3-] = [H3O+] = 0.088
by using the ICE table 2:
HSO3- ↔ H3O + SO3-
initial 0.088 0.088 0
change -X +X +X
Equ (0.088-X) (0.088+X) X
Ka2= [H3O+] [SO3-] / [HSO3-]
we can assume [HSO3-] = 0.088 as the value of Ka2 is very small
6.3x10^-8 = (0.088+X)*X / 0.088
X^2 +0.088 X - 5.5x10^-9= 0 by solving this equation for X
∴X= 6.3x10^-8
∴[H3O+] = 0.088 + 6.3x10^-8
= 0.088 m ( because X is so small)
∴PH= -㏒[H3O+]
= -㏒ 0.088 = 1.06