Answer:
D = -4/7 = - 0.57
C = 17/7 = 2.43
Explanation:
We have the following two equations:

First, we isolate C from equation (2):

using this value of C from equation (3) in equation (1):

<u>D = - 0.57</u>
Put this value in equation (3), we get:

<u>C = 2.43</u>
Mechanical energy is the sum of kinetic energy and potential energy
To solve this problem it is necessary to apply the concepts related to Newton's second law, the definition of density and sum of forces in bodies.
From Newton's second law we understand that
Gravity at this case)
Where,
m = mass
a= acceleration
Also we know that

Part A) The buoyant force acting on the balloon is given as

As mass is equal to the density and Volume and acceleration equal to Gravity constant



PART B) The forces acting on the balloon would be given by the upper thrust force given by the fluid and its weight, then




PART C) The additional mass that can the balloon support in equilibrium is given as




The electron's path in the magnetic field is a straight line when viewed from above.
In fact, the electron initially moves upward, while the magnetic field is directed horizontally. The electron experiences a force due to the magnetic field (the Lorentz force), whose direction is given by the right-hand rule:
- index finger --> initial direction of the electron (upward)
- middle finger --> direction of the magnetic field (horizontally, away from the observer)
- opposite direction to the thumb* --> direction of the force (horizontally, but perpendicular to the magnetic field, to the right)
This means that the Lorentz force makes the electron moving perpendicular to the magnetic field in the horizontal plane, and since the direction of the field is not changing, this force does not change its direction, so the electron moves in the same direction of the force in the horizontal plane (to the right), therefore following a straight line.
* the direction should be reversed because the charge is negative.
Answer:
they both uses electric volts