They send out waves differently and cannot be heard easily
The correct answer is<span> gases, energy, temperature, phases
Gravity and nuclear forces are not encompassed in the kinetic molecular theory as it deals with movement and behavior of gas molecules. It does not include their conversion to other types of energy or anything similar. </span>
Answer:
59.4 meters
Explanation:
The correct question statement is :
A floor polisher has a rotating disk that has a 15-cm radius. The disk rotates at a constant angular velocity of 1.4 rev/s and is covered with a soft material that does the polishing. An operator holds the polisher in one place for 4.5 s, in order to buff an especially scuff ed area of the floor. How far (in meters) does a spot on the outer edge of the disk move during this time?
Solution:
We know for a circle of radius r and θ angle by an arc of length S at the center,
S=rθ
This gives
θ=S/r
also we know angular velocity
ω=θ/t where t is time
or
θ=ωt
and we know
1 revolution =2π radians
From this we have
angular velocity ω = 1.4 revolutions per sec = 1.4×2π radians /sec = 1.4×3.14×2×= 8.8 radians / sec
Putting values of ω and time t in
θ=ωt
we have
θ= 8.8 rad / sec × 4.5 sec
θ= 396 radians
We are given radius r = 15 cm = 15 ×0.01 m=0.15 m (because 1 m= 100 cm and hence, 1 cm = 0.01 m)
put this value of θ and r in
S=rθ
we have
S= 396 radians ×0.15 m=59.4 m
Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also 
where
is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
Answer:
For number 4: A vector pointing to the right with a magnitude of 2.0
Explanation:
Very simple- just subtract 6-2
I am not sure how to do #2- sorry!