Answer:
M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b]
ΔR is the difference in density between the gas inside and surrounding the balloon.
R[b] is the density of gas inside the baloon.
====================================
Let V be the volume of helium required.
Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V
U = 1.225gV newtons
----
Weight of Helium = Volume of Helium * Density of Helium * g
W[h] = 0.18gV N
Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N -----
Weight of 260kg = 2549.7 N
Then to lift the whole thing, F > 2549.7
So minimal F would be 2549.7
----
1.045gV = 2549.7
V = 248.8 m^3
Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)
=====
Let the density of the surroundings be R
Then U-W = (1-0.9)RgV = 0.1RgV
So 0.1RgV = 2549.7 N
V = 2549.7 / 0.1Rg
Assuming that R is again 1.255, V = 2071.7 m^3
Then mass of hot air required = 230.2 * 0.9R = 2340 kg
Notice from this that M = 2549.7/0.9Rg * 0.1R so
M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)
M[min] = M[basket] * ΔR/R[b]
Answer:
v = 8.09 m/s
Explanation:
For this exercise we use that the work done by the friction force plus the potential energy equals the change in the body's energy.
Let's calculate the energy
starting point. Higher
Em₀ = U = m gh
final point. To go down the slope
Em_f = K = ½ m v²
The work of the friction force is
W = fr L cos 180
to find the friction force let's use Newton's second law
Axis y
N - W_y = 0
N = W_y
X axis
Wₓ - fr = ma
let's use trigonometry
sin θ = y / L
sin θ = 11/110 = 0.1
θ = sin⁻¹ 0.1
θ = 5.74º
sin 5.74 = Wₓ / W
cos 5.74 = W_y / W
Wₓ = W sin 5.74
W_y = W cos 5.74
the formula for the friction force is
fr = μ N
fr = μ W cos θ
Work is friction force is
W_fr = - μ W L cos θ
Let's use the relationship of work with energy
W + ΔU = ΔK
-μ mg L cos 5.74 + (mgh - 0) = 0 - ½ m v²
v² = - 2 μ g L cos 5.74 +2 (gh)
v² = 2gh - 2 μ gL cos 5.74
let's calculate
v² = 2 9.8 11 - 2 0.07 9.8 110 cos 5.74
v² = 215.6 -150.16
v = √65.44
v = 8.09 m/s
Answer: K.E = 0.4 J
Explanation:
Given that:
M = 1.0 kg
h = 0.04 m
K.E = ?
According to conservative of energy
K.E = P.E
K.E = mgh
K.E = 1 × 9.81 × 0.04
K.E = 0.3924 Joule
The kinetic energy of the pendulum at the lowest point is 0.39 Joule
Hi hi I hope you know that you have a great time jaha