Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
Answer:
D. 2^(3/2)
Explanation:
Given that
T² = A³
Let the mean distance between the sun and planet Y be x
Therefore,
T(Y)² = x³
T(Y) = x^(3/2)
Let the mean distance between the sun and planet X be x/2
Therefore,
T(Y)² = (x/2)³
T(Y) = (x/2)^(3/2)
The factor of increase from planet X to planet Y is:
T(Y) / T(X) = x^(3/2) / (x/2)^(3/2)
T(Y) / T(X) = (2)^(3/2)
Answer:
2.83
Explanation:
Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:
(1)
with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):
(2)
Because in the right side of the equation (2) we have only constant quantities, that implies the ratio
is constant for all the planets orbiting the same sun, so we can said that:




Answer:
I am not sure about the answer as I don't have a proper calculator besides me now
Explanation:
but I used this equation:
(8.20)sin30(1-d)=10d
Idk whether it is correct or not, I'm just a student too
what is your method of doing this question?
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find