Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.
Answer:
turning a doorknob
Explanation:
it will snap back once you release it.
Answer:
Yes, the velocity of the object can reverse direction when its acceleration is constant. For example consider that the velocity of any object at any time t is given as: ... At At t = 0 sec, the magnitude of velocity is 2m/s and is moving in the forward direction i.e.v (t) = -2.