Spectroscopy — the use of light from a distant object to work out the object is made of — could be the single-most powerful tool astronomers use, says Professor Fred Watson from the Australian Astronomical Observatory. ... "It lets you see the chemicals being absorbed or emitted by the light source.
Answer:
12m
Explanation:
To obtain the answer to the question given, we must observe the characteristics of image formed by a plane mirror.
The image formed by a plane mirror have the following characteristics:
1. Laterally inverted.
2. Same distance as the object from the mirror.
3. Same height as the object.
4. Virtual.
With the above information, we can calculate the distance between the boy and his image as follow:
Initially:
Object distance (u) = 4m
Image distance (v) = 4m
The boy moved 2m away, therefore:
Object distance (u) = 2 + 4 = 6m
Image distanc(v) = 2 + 4 = 6m
The distance between the boy and his image will be the sum of his distance (u) and image distance (v) i.e (u + v)
The distance between the boy and his image = 6 + 6 = 12m
Therefore, the distance between the boy and his image is 12m.
Answer:
1275J
Explanation:
Given parameters:
Force on box = 85N
Distance moved = 15m
Unknown:
Work done = ?
Solution:
Work done is the amount of force applied on a body to move it through a specific distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 85 x 15 = 1275J
v = x/t
v = average velocity, x = displacement, t = elapsed time
Given values:
x = 6km south, t = 60min
Plug in and solve for v:
v = 6/60
v = 0.1km/min south