Answer: 12Mg/h
Explanation:
Let the spring is compressed by a distance x,before the lift stops,then
Mg(h+x)= 1/2 kx^2 ............... 1
Kx - Mg = M ( 5g ) ............ 2
Make x the subject in equation 2
Kx = 5Mg + Mg
Kx = 6Mg
x = 6Mg/k ............ 3
Put equation 3 into 1
Mg ( h + x ) = 1/2 kx^2
Mgh + Mgx = 1/2kx^2
Mgh + Mg × 6Mg/k = 1/2k × ( 6Mg/k )^2
Mgh + Mg× 6Mg/k = 1/2k 36M^2g^2/ k^2
h =18Mg/k - 6Mg/h
K = 12Mg/h
Answer:
An electric bell is placed inside a transparent glass jar. The bell can be turned on and off using a switch on the outside of the jar. A vacuum is created inside the jar by sucking out the air. Then the bell is rung using the switch. What will we see and hear?
A.
We’ll see the bell move, but we won’t hear it ring.
B.
We won’t see the bell move, but we’ll hear it ring.
C.
We’ll see the bell move and hear it ring.
D.
We won’t see the bell move or hear it ring.
E.
We’ll see the sound waves exit the vacuum pump.
Explanation:
so, the answer to the question is
A.
We'll see the bell move, but we won’t hear it ring.
Neither set of choices is correct.
If the distance is tripled, then the forces decrease to
1/9 Fg. and. 1/9 Fe.
Note. When the objects are charged, the gravitational force Fg can almost always be ignored, since Fe is like 10^40 greater when the quantities of mass and charge are similar.