1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
15

An airplane in the process of taking off travels with a speed of 80 m/s at an angle of 15° above the horizontal. What is the gro

und speed of the airplane? O 80 m/s O 21 m/s O 77 m/s O 2.6 m/s
Physics
1 answer:
9966 [12]3 years ago
5 0

Answer:

Option C

Explanation:

given,

velocity of airplane = 80 m/s

angle with the horizontal = 15°

speed of the ground= ?

when the plane is taking off the horizontal component of the velocity is v cosθ

so,      

        ground speed of the airplane is = v\times cos\theta

                                                              = 80 \times cos 15^0

                                                           v  =  77.27 m/s

horizontal velocity of the air plane comes out to be 77.27 m/s ≅ 77 m/s

so, the correct option is Option C

You might be interested in
If the sun suddenly ceased to shine, how long would it take earth to become dark? you will have to look up the speed of light in
sleet_krkn [62]
We are 8 light minutes from the sun. That means two things, we see the sun as it was 8 minutes ago, and we WOULD continue to see the sun for 8 minutes after it disappeared.
3 0
3 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
What is the internal energy of 2.00 mol of diatomic hydrogen gas (H2) at 35°C?
djyliett [7]
As you mentioned, we will use <span>Equipartition Theorem.
</span><span>H2 has 5 degrees of freedom; 3 translations and 2 rotation
</span>Therefore:
Internal energy = (5/2) nRT
You just substitute in the equation with the values of R and T and calculate the internal energy as follows:
Internal energy = (5/2) x 2 x <span>8.314 x 308 = 32.0089 x 10^3 J</span>
4 0
2 years ago
The speed of sound in air is 345 m/s. A tuning fork vibrates above the open end of a sound resonance tube. If sound waves have w
Delvig [45]

To develop this problem it is necessary to apply the concept of Frequency based on speed and wavelength.

According to the definition the frequency can be expressed as

f = \frac{v}{\lambda}

Where,

v = Velocity

\lambda = Wavelength

Our value are given by,

v = 345m/s

\lambda = 63cm

Replacing

f = \frac{345}{0.63}

f = 547.61Hz

Therefore the frequency of the tuning fork is 547.61Hz

6 0
3 years ago
Consider electromagnetic waves in free space. What is the wavelength of a wave that has the following frequencies? (a) 4.10 x 10
navik [9.2K]

Explanation:

To find the answer use the equation speed of light=wavelength multiplied by frequency (c=lambda*f) by substituting the value for the frequency the the speed of light

7 0
3 years ago
Other questions:
  • an apple in a tree has a gravitational potential energy of 175J and a mass of 0.36g . how high from the ground is the apple
    14·1 answer
  • What is the speed of a ball thrown from 1.2m above the ground if it travels 13.7m horizontally before hitting the ground
    10·1 answer
  • In fiction, a symbol can be described as __________.
    10·1 answer
  • A man holding a rock sits on a sled that is sliding across a frozen lake (negligible friction) with a speed of 0.480 m/s. The to
    13·1 answer
  • Can you have a positive velocity but a negative acceleration? I need this to complete my physics hw :/
    12·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> Which wave has the greatest frequency?
    12·1 answer
  • Collisions between atoms are often elastic, but sometimes inelastic collisions occur, and the lost kinetic energy can become int
    7·1 answer
  • Newton’s second law: Force equals mass times acceleration (__=___).
    10·1 answer
  • Objects fall near the surface of the earth with a constant downward acceleration of 10 m/s2 . Suppose a falling object is moving
    15·1 answer
  • FIRST ANSWER GETS BRAINLIST:
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!