Answer: Odor of ammonia would we detect first on the other side of the room.
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
Thus the odor of ammonia would we detect first on the other side of the room as the rate of effusion of ammonia would be faster as it has low molecular weight as compared to hydrogen sulphide.
Precision relates to how close the answers are to each other, so I’d think it would be D because of the limited range between data points.
Answer:
D. 15.8atm
Explanation:
Given parameters:
Initial pressure = 13atm
Initial temperature = 34°C = 34 + 273 = 307K
Final temperature = 100°C = 100 + 273 = 373K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we apply a derivation of the combined gas law taking the volume as a constant.
The expression is shown mathematically below;
=
P and T pressure and temperature values
1 and 2 are initial and final states
Insert the parameters and solve for T₂;
=
P₂ = 15.8atm
Answer:
mental model is an explanation of someone's thought process about how something works in the real world. It is a representation of the surrounding world, the relationships between its various parts and a person's intuitive perception about his or her own acts and their consequences. Mental models can help shape behaviour and set an approach to solving problems (similar to a personal algorithm) and doing tasks.
:)
Answer:
1.14 M
Explanation:
grams/molar mass = ans. / volume
317/110.98=2.86/2.50=1.14 M
- Hope that helps! Please let me know if you need further explanation.