Answer:
∆H = negative and ∆S = positive.
Explanation:
The reaction given in the question is spontaneous at room temperature ,
hence ,
The the gibbs free energy , i.e. ,∆G will be negative for spontaneous reaction
According to the formula ,
∆G = ∆H -T∆S
The value of ∆G can be negative , if ∆H has a negative value and ∆S has a positive value , because , T∆S , has a negative sign .
Hence , the answer will be , ∆H = negative and ∆S = positive.
Answer:
Mario uses a hot plate to heat a beaker of 50mL of water. He used a thermometer to measure the
temperature of the water. The water in the beaker began to boil when it reached the temperature of
100'C. If Mario completes the same experiment with 25mL of water, what would happen to the boiling
point?
a) The water will not reach a boil.
b) The boiling point of water will increase.
c) The boiling point of water will decrease.
d) The boiling point of water will stay the same.
Explanation:
Answer:
Cp = 0.093 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 300 J
m = mass = 267 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 12 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 300 J / (267 g × 12 °C)
Cp = 0.093 J.g⁻¹.°C⁻¹
Answer:
Option (B) 3.
Explanation:
In the model represented above, the two extreme represent carbon atoms since no other group are attached to it. The joint at the middle also represent carbon atom.
Thus, we can write a more simplify illustration for the model above as
C—C—C
From the above illustration, we can see that the model contains 3 carbon atom.