The four inner planets share several features in common.
(Mercury, Venus, Earth and Mars)
They are called terrestrial planets because they have solid, rocky surfaces roughly similar to desert and mountainous areas on the earth.
B. Extra text to get to 20 characters.
The answer is, C. the wavelength is measured in parallel to the direction of the wave, at any point, under the same repetition for any type of wave.
Answer:
H = 1/2 g t^2 where t is time to fall a height H
H = 1/8 g T^2 where T is total time in air (2 t = T)
R = V T cos θ horizontal range
3/4 g T^2 = V T cos θ 6 H = R given in problem
cos θ = 3 g T / (4 V) (I)
Now t = V sin θ / g time for projectile to fall from max height
T = 2 V sin θ / g
T / V = 2 sin θ / g
cos θ = 3 g / 4 (T / V) from (I)
cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ
tan θ = 2/3
θ = 33.7 deg
As a check- let V = 100 m/s
Vx = 100 cos 33.7 = 83,2
Vy = 100 sin 33,7 = 55.5
T = 2 * 55.5 / 9.8 = 11.3 sec
H = 1/2 * 9.8 * (11.3 / 2)^2 = 156
R = 83.2 * 11.3 = 932
R / H = 932 / 156 = 5.97 6 within rounding
Answer:
The reading of the scale during the acceleration is 446.94 N
Explanation:
Given;
the reading of the scale when the elevator is at rest = your weight, w = 600 N
downward acceleration the elevator, a = 2.5 m/s²
The reading of the scale can be found by applying Newton's second law of motion;
the reading of the scale = net force acting on your body
R = mg + m(-a)
The negative sign indicates downward acceleration
R = m(g - a)
where;
R is the reading of the scale which is your apparent weight
m is the mass of your body
g is acceleration due to gravity, = 9.8 m/s²
m = w/g
m = 600 / 9.8
m = 61.225 kg
The reading of the scale is now calculated as;
R = m(g-a)
R = 61.225(9.8 - 2.5)
R = 446.94 N
Therefore, the reading of the scale during the acceleration is 446.94 N