Answer:
1000 cm.
Explanation:
To obtain the estimated tree height :
(Height of rod / length of rod shadow) = (height of tree / length of tree shadow)
Substituting values into the formula :
(150cm / 120 cm) = (height of tree / 800 cm)
Using cross multiplication :
Height of tree * 120 = 150 * 800
Height of tree = (150 * 800) / 120
Height of tree = 120,000 / 120
Height of tree = 1000
Hence, estimate height of tree = 1000 cm
Answer:
Explanation:
The distance will be the total distannce covered during the journey.
If you move 3 meters East and move 4 meters north, then the distance will be calculated as;
Distance = distnace through East+distance through north
Distance = 3m + 4m
<em>Distance = 7m</em>
Displacement is the distance covered in a specified direction. It is the shortest distance covered by me. This can be gotten using the Pythagoras theorem.
d² = 3²+4²
d² = 9+16
d² = 25
d = √25
d = 5m
<em>Hence the displacement of the object is 5metres</em>
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
The velocity is a vectorial quantity, whereas speed is a scalar quantity, meaning it depends on the direction!
As such, the velocity is changing because the direction is changing.