1. No they aren’t because they all belong to different sports and are used differently
Answer:
new atmospheric pressure is 0.9838 × Pa
Explanation:
given data
height = 21.6 mm = 0.0216 m
Normal atmospheric pressure = 1.013 ✕ 10^5 Pa
density of mercury = 13.6 g/cm³
to find out
atmospheric pressure
solution
we find first height of mercury when normal pressure that is
pressure p = ρ×g×h
put here value
1.013 × = 13.6 × 10³ × 9.81 × h
h = 0.759 m
so change in height Δh = 0.759 - 0.0216
new height H = 0.7374 m
so new pressure = ρ×g×H
put here value
new pressure = 13.6 × 10³ × 9.81 × 0.7374
atmospheric pressure = 98380.9584
so new atmospheric pressure is 0.9838 × Pa
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :
t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).
The pressure law states that pressure is directly proportional to temperature.
p=kt where p is pressure, k is a constant, and t is temperature.
p=kt -- substitute
50000=k*300000
k=1/6
p=1/6*360000
p=60000 -- in pa not kpa
The pressure is 60kpa