Answer:
f = 5 cm
Explanation:
using the thin lens equation, given as follows:

where,
f = focal length = ?
do = the distance of object from lens = 20 cm
di = the distance of image from lens = 6.6667 cm
Therefore,

<u>f = 5 cm</u>
Answer:
If you throw a pebble into a pond, ripples
spread out from where it went in. These
ripples are waves travelling through the
water. The waves move with a transverse
motion.
Explanation:
Answer:
5kgm
Explanation:
convert cm to m and g to kg
250/1000=0.25kg
5/1000=0.05m
then find the density
density=mass/volume
=0.25kg/0.05m
=5kgm
Answer:
Option B) This minimizes the harmful side effects of the radiations
Explanation:
Half-life is the time taken for the decay of an radio-active atom in which it disintegrates such that it becomes half of its value at the beginning.... The nuclei should be in active mode for a longer duration sufficient for the treatment of the condition but these nuclei should have a sufficient shorter half life so that they don't get enough time to cause any damage to the health of the person other than treating the cause.
A shorter half life gives the assurance that the radiation after the treatment will leave the body without getting accumulated and cause harm to the body cells and other organs.
Answer:
Both are true under specific circumstances. And are related to Boyle's law. volume and pressure in a gas are inversely proportional.
Explanation:
There is a tendency to entropy in our reality, that is, in particular true and visible with gases, they tend to occupy the whole space where they are confined, when we heat a volume of gas, then the movement of the particles and in consequence the pressure of the gas increases and to compensate this the volume tends to be increased too, according to Boyle's law. And the opposite happens when the volume is increased, then the pressure is relieved and since the particles are further one from each other, then the temperature is lower, and therefore it cools down.