The energy that is
essential to break one C-H bond is 414 kJ/mol. Since, there are four C-H bonds
in CH4, the energy Δ HCH4 for
breaking all the bonds is calculated as Δ HCH4 = 4 x bond energy of C-H bond. By
multiplying the 4 with the 414 kJ/mol you can get the answer of 1656 kJ/mol CH4
molecules.
Answer:
turgor pressure can be done in a lab or a self test.
turgor pressure is key to the plant’s vital processes. It makes the plant cell stiff and rigid. Without it, the plant cell becomes flaccid. Prolonged flaccidity could lead to the wilting of plants.
Turgor pressure is also important in stomate formation. The turgid guard cells create an opening for gas exchange. Carbon dioxide could enter and be used for photosynthesis. Other functions are apical growth, nastic movement, and seed dispersal.
Explanation:
- salt is bad for turgor pressure.
- Turgidity helps the plant to stay upright. If the cell loses turgor pressure, the cell becomes flaccid resulting in the wilting of the plant.
- The wilted plant on the left has lost its turgor as opposed to the plant on the right that has turgid cells.
<span>P*V/T=constant
so P*V= constant*T
if T doesn't change then
P*V= constant
so 150kPa*0.8L=75kPa*xL
xL=150kPa*0.8L/75kPa=1.6L
hope it help</span>
Answer:

Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.

The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.

Multiply on the right side of the equation. The units of degrees Celsius cancel.

We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g

The units of Joules cancel.


The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.

The mass of the sample of metal is approximately <u>333 grams.</u>