The famous formula E=mc^2 really says that mass and energy are the same thing, but measured in different units. So the separate laws of conservation- one for mass and the other for energy- are now merged into one law.
Einstein's theory of special relativity (1905) shows that matter (as mass) and energy can be converted into each other according to the famous equation E = mc2, where E is energy, m is mass, and c is the speed of light.
<em>Hope</em><em> </em><em>It</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
Answer: Protons
WHY?
Changing electrons will only result in the same element having different charges and hence, changing it's chemical properties.
Changing neutrons will not change an element but it will result in an isotope forming instead. (Isotopes are elements of the same type with different neutron numbers.)
However, changing the proton number would immediately change the nucleus composition, resulting in a change in element with a negative charge as there are more electrons than protons. This results in a expansion in valance electrons's distance from the nucleus. This results in a change in chemical properties of the element.
Therefore, a change in Protons is the answer.
Answer:
= 72900 years
Explanation:
- The half-life is the time taken by a radioactive material to decay by half the original amount.
- The half-life of plutonium-239 is 24300 years which means it takes 24300 years to decay by half the original amount.
To calculate the time taken for a mass of 8 kg to decay to 1 kg we use;
New mass = Original mass x (1/2) ^n, where n is the number of half-lives
Therefore;
1 kg = 8 kg × (1/2)^n
1/8 = (1/2)^n
solving for n;
n =3
Therefore;
Time = 3 × 24300 years
= 72900 years
It will, therefore, take 72900 years for 8 kg of plutonium-239 to decay to 1 kg.
Answer:
Explanation:
Hello there!
In this case, since the buffer is not given, we assume it is based off ammonia, it means the ammonia-ammonium buffer, whereas the ammonia is the weak base and the ammonium ion stands for the conjugate acid. In such a way, when adding HI to the solution, the base of the buffer, NH3, reacts with the former to promote the following chemical reaction:
Because the HI is totally ionized in solution so the iodide ion becomes an spectator one.
Best regards!