Answer:
a
When 

b
When 
Explanation:
From the question we are told that
The radius is R
The current is I
The distance from the center
Ampere's law is mathematically represented as
![B[2 \pi r] = \mu_o * \frac{I r^2 }{R^2 }](https://tex.z-dn.net/?f=B%5B2%20%5Cpi%20r%5D%20%20%3D%20%20%5Cmu_o%20%20%2A%20%20%5Cfrac%7BI%20r%5E2%20%20%7D%7BR%5E2%20%7D)

When 
=> 
But when 
![B = [\frac{\mu_o * I }{ 2 \pi R^2} ]* r](https://tex.z-dn.net/?f=B%20%3D%20%20%5B%5Cfrac%7B%5Cmu_o%20%2A%20%20I%20%7D%7B%202%20%5Cpi%20R%5E2%7D%20%5D%2A%20r)
Answer:
The correct option is;
B. 8 m, because he has to apply less force over a greater distance
Explanation:
In the given question, in order for the student to lift the boxes onto the tuck with less amount of force, he applies the principle of Mechanical Advantage
The mechanical advantage is given by the measure by which a force is amplified through the use of a tool
Given that the work done = The force × The distance, we have
F₁ × d₁ = F₂ × d₂, which gives;
d₁/d₂ = F₂/F₁
Where;
F₁ = The input force
F₂ = The output force
d₁ = The input distance
d₂ = The output distance
The Mechanical advantage, MA = d₁/d₂ = F₂/F₁
Therefore, when the input distance is increased the input force will be reduced for a given output force
Answer:
Weight of the fluid that the object displaces.
Explanation:
When the fluid is completely immersed in a fluid, it experiences pressure from all the direction. While the object is immersed in the fluid a force acts on it in the opposite direction, i.e., upwards. This force is termed as buoyant force.
Also, as per the Archimedes' Principle, the force experience by the object is the same as the weight of the fluid that gets displaced by the object.
Thus on complete immersion of the object in the fluid, it experiences the force same as the weight of the fluid that gets displaced
Answer:
E=0.036 V/m
Explanation:
Given that
Resistivity ,ρ=2.44 x 10⁻⁸ ohms.m
d= 0.9 mm
L= 14 cm
I = 940 m A = 0.94 A
We know that electric field E
E= V/L
V= I R
R=ρL/A
So we can say that
E= ρI/A
Now by putting the values

E=0.036 V/m
Can be numbered in 2 different ways, one box represents one element, and organized by atomic number