It will be 133 on the moon
Question:
Consider a sample of helium gas in a container fitted with a piston as pictured below. The piston is frictionless, but has a mass of 10.0 kg. How many of the following processes will cause the piston to move away from the base and decrease the pressure of the gas? Assume ideal behavior.
I. Heating the helium. II.
II. toRemoving some of the helium from the container.
III. Turning the container on its side.
IV. Decreasing the pressure outside the container.
a) 0
b) 1
c) 2
d) 3
e) 4
Answer:
Only one process will cause the piston to move which is
i) Heating the helium
Explanation:
When helium is heated it becomes less dense or lighter. Heating the helium will cause an increase in volume which will make the piston to move away from the base. When the volume finishes increasing, the piston will stop moving which in turn will make the forces on both sides of the piston balanced, so the pressure inside will balance the weight of the piston and that of the atmosphere. From that we can see that there has been a pressure change as a result of heating.
Answer:
The charge is 
Explanation:
Given that,
Distance = 2.5 mm
Electric field = 800 NC
Length 
We need to calculate the linear charge density
Using formula of linear charge density


Put the value into the formula


We need to calculate the charge
Using formula of charge

Put the value into the formula


Hence, The charge is 
(a) The skater covers a distance of S=50 m in a time of t=12.1 s, so its average speed is the ratio between the distance covered and the time taken:

(b) The initial speed of the skater is

while the final speed is

and the time taken to accelerate to this velocity is t=2 s, so the acceleration of the skater is given by

(c) The initial speed of the skater is

while the final speed is

since she comes to a stop. The distance covered is S=8 m, so we can use the following relationship to find the acceleration of the skater:

from which we find

where the negative sign means it is a deceleration.
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)