Answer:
= 1.7 cm
Explanation:
The magnification of the compound microscope is given by the product of the magnification of each lens
M = M₀
M = - L/f₀ 25/
Where f₀ and
are the focal lengths of the lens and eyepiece, respectively, all values in centimeters
In this exercise they give us the magnification (M = 400X), the focal length of the lens (f₀ = 0.6 cm), the distance of the tube (L = 16 cm), let's look for the focal length of the eyepiece (
)
= - L / f₀ 25 / M
Let's calculate
= - 16 / 0.6 25 / (-400)
= 1.67 cm
The minus sign in the magnification is because the image is inverted.
= 1.7 cm
Answer:
Can't see anything, please share clearly
Answer:
-120000 W
Explanation:
Power = change in energy / time
P = ΔE / t
P = (½ mv₂² − ½ mv₁²) / t
P = m (v₂² − v₁²) / (2t)
Given m = 1.5 t = 1500 kg, v₂ = 10 m/s, v₁ = 30 m/s, and t = 5 s:
P = (1500 kg) ((10 m/s)² − (30 m/s)²) / (2 × 5 s)
P = -120000 W
Answer:
<h2>Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.</h2>
<h3>Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other quantities. </h3>
Explanation:
#Let's Study
#I Hope It's Helps
#Keep On Learning
#Carry On Learning

Answer:
Explanation:
The concept of a new strong nuclear force was introduced. In 1935, the first theory for this new force was developed by the Japanese physicist Hideki Yukawa, who suggested that the nucleons would exchange particles between each other and this mechanism would create the force.