1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zloy xaker [14]
3 years ago
6

A 94.7 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.75 r

ad/s1.75 rad/s . A monkey drops a 9.25 kg9.25 kg bunch of bananas vertically onto the platform. They hit the platform at 4545 of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 21.1 kg21.1 kg , drops vertically to the edge of the platform, grasps it, and continues to rotate with the platform. Find the angular velocity of the platform with its load. Model the platform as a disk of radius 1.63 m.= ___________ rad/s
Physics
1 answer:
Marta_Voda [28]3 years ago
3 0

Answer:

The angular velocity of the platform is 1.114 rad/s.

Explanation:

Step 1:  Given data

Mass of the horizontal circular platform = 94.7 kg

Mass of the monkey = 21.1 kg

Initial angular velocity = 1.75 rad/s

A monkey drops a 9.25 kg bunch of bananas

They hit the platform at 4/5 of its radius from the center

Model the platform as a disk of radius 1.63 m

Step 2: Calculate the moment of inertia of the disk

I = ½ * m * r² = ½ * 94.7 * 1.63² = 125.80

Step 3: Calculate the initial angular momentum

I = 125.80 * 1.75 = 220.15

Step 4: Calculate the moment of inertia for the bananas

For the bananas, r = 4/5 * 1.63 = 1.304 m

I = 9.25 * 1.304² = 15.73

Step 5: Calculate Moment of inertia for the monkey

I = 21.1 * 1.63² = 56.06

Step 6: Total moment of inertia = 125.80 + 15.73 + 56.06 = 197.59

Step 7: Calculate final angular momentum = 197.59 * ω

197.59 * ω = 220.15

ω = 220.15 / 197.59

This is approximately 1.114 rad/s.

You might be interested in
When the play button is pressed, a CD accelerates uniformly from rest to 450 rev/min in 3.0 revolutions. If the CD has a radius
Marina CMI [18]

To solve this problem it is necessary to apply the kinematic equations of angular motion.

Torque from the rotational movement is defined as

\tau = I\alpha

where

I = Moment of inertia \rightarrow \frac{1}{2}mr^2 For a disk

\alpha = Angular acceleration

The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

2 \alpha \theta = \omega_f^2-\omega_i^2

Where

\omega_{f,i} = Final and Initial Angular velocity

\alpha = Angular acceleration

\theta = Angular displacement

Our values are given as

\omega_i = 0 rad/s

\omega_f = 450rev/min (\frac{1min}{60s})(\frac{2\pi rad}{1rev})

\omega_f = 47.12rad/s

\theta = 3 rev (\frac{2\pi rad}{1rev}) \rightarrow 6\pi rad

r = 7cm = 7*10^{-2}m

m = 17g = 17*10^{-3}kg

Using the expression of angular acceleration we can find the to then find the torque, that is,

2\alpha\theta=\omega_f^2-\omega_i^2

\alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}

\alpha = \frac{47.12^2-0^2}{2*6\pi}

\alpha = 58.89rad/s^2

With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so

\tau = I\alpha

\tau = (\frac{1}{2}mr^2)\alpha

\tau = (\frac{1}{2}(17*10^{-3})(7*10^{-2})^2)(58.89)

\tau = 0.00245N\cdot m \approx 2.45*10^{-3}N\cdot m

Therefore the torque exerted on it is 2.45*10^{-3}N\cdot m

3 0
2 years ago
A cylindrical vessel with water is rotated about its vertical axis with a constant angular velocity co. Find:
Nataly [62]

Answer:

Explanation:

The question is one that examine the physical fundamental of mechanics of a cylindrical vessel .

We would use the Euler' equation and some coriolis and centripetal force formula.

The fig below explains it.

4 0
3 years ago
Read 2 more answers
What is the rising of rock layers called
Alex777 [14]

The answer of this question is called uplift i.e the rising of rock layers in geology is called uplift.

Uplift is the process in which there will be vertical elevation of earth surface due to various natural processes occurring inside the surface of earth like earth quakes. Sometimes uplift is also caused by the mountain building which hampers the balance of a particular region.

In the process of uplift,the rocks normally metamorphic rocks present underground will be brought up to the earth surface.The enhanced elevation will cause erosion of lot of materials on the surface of earth.


6 0
2 years ago
Read 2 more answers
A ball is thrown straight up with enough speed so that it is in the air for several seconds. Assume the positive direction is up
Andrew [12]

Answer:

a) v= 0 m/s b) v= 6.86 m/s

Explanation:

a) When the ball reaches to its highest point, under the influence of gravity, before starting to fall down, it momentarily comes to an stop (this is needed prior to change direction in any movement), so, applying the definition of acceleration, and replacing the acceleration a by g, we have:

vf = v₀ - g*t (1)

The minus sign means that the acceleration due to gravity is always downward, so if we assume that the positive direction is upwards it must be negative.

At the highest point, vf= 0.

b) Prior to solve this point, we need to know which is the time when the ball reaches to its highest point.

As we know vf=0, we can solve (1) for t, as follows:

th = v₀/g

Now, for a time that is 0.7 s before this time, applying the acceleration definition and solving for v again, we have:

v = v₀ -(g *(th-0.7 s)), but th= v₀/g, so we get:

v= v₀ -g((v₀/g)-0.7 s) = v₀ - v₀ + g*0.7 s

⇒ v=g*0.7 s = 9.8 m/s²*0.7 s

⇒ v = 6.86 m/s

6 0
3 years ago
The mass of a string is 5.9 × 10-3 kg, and it is stretched so that the tension in it is 200 n. a transverse wave traveling on th
bagirrra123 [75]

The velocity of the wave on the string is given by

v=\sqrt{\frac{T}{\frac{m}{L}}}  \\  v=\sqrt{\frac{TL}{m}}

Solving the above equation,

v^2=\frac{TL}{m} \\  L=\frac{v^2m}{T}

The frequency of the wave f=300 and wave length is 0.76

The velocity is v=(300)(0.76)=228

Substituting numerical values,

L=\frac{228^2(0.0059)}{200}\\ T=1.534

The length of the string is 1.534 m

4 0
3 years ago
Other questions:
  • Ina shoots a large marble (Marble A, mass: 0.08 kg) at a smaller marble (Marble B, mass: 0.05 kg) that is sitting still. Marble
    9·1 answer
  • At what angle does the sun hit the temperate zone?​
    15·2 answers
  • A condition that affects the ability to sleep or the quality of sleep is referred to as a __________.
    8·2 answers
  • Which of the following are transferred or shared when two atoms react chemically? *
    9·1 answer
  • A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s
    8·2 answers
  • Determine the amount of potential energy of a 5N book that is 1.5m high on a shelf.
    7·1 answer
  • A rose plant inherited two alleles for white flower petals.
    9·2 answers
  • If a wave has a wavelength of 2m and a frequency of 500 hz, what is its speed
    13·1 answer
  • Which of the following metals is most reactive?
    10·2 answers
  • HELP PLEASE TY!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!