Answer:


Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by

The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are


The components of the second force are


The net force is


The magnitude of the net force is


The acceleration has a magnitude of



The direction of the acceleration is the same as the net force:


Answer:
B. He should change the lengths of the vectors that point tangent to the circle so that each is the same length.
Explanation:
A uniform circular motion is a motion in a circle where the tangential speed of the object is constant.
In the motion map:
- The arrows pointing towards the centre of the circle represent the centripetal acceleration, and their length represent the magnitude of the acceleration
- The arrows pointing tangential to the circle represent the tangential speed, and their length represent the magnitude of the speed
In this motion map, we see that the length of the vectors pointing tangent to the circle is not constant: this means that the speed is not constant. In order to have a uniform circular motion, the speed must be constant, therefore the lengths of the vectors that point tangent to the circle must be the same.
Objects repel and attract because of a thing called electrostatic attraction. When objects have the same charge (positive or negative), then they will repel, and if they have opposite charges then they will attract
Answer:
Both technicians are right, to be able to make a threaded joint you need to use the external thread on one part of the rod using the tap and die set, and on the other side of the rod you need to have an internal thread using the thread repair insert kit
I think it is A) but someone might need to double check that.