3/5 times 5/3x = 8*3/5. X=24/5 simplified would be x= 4.8 L.
Answer: 0.8M
Explanation:
Given that,
Amount of moles of NaCl (n) = ?
Mass of NaCl in grams = 1.40 g
For molar mass of NaCl, use the molar masses:
Sodium, Na = 23g;
Chlorine, Cl = 35.5g
NaCl = (23g + 35.5g)
= 58.5g/mol
Since, amount of moles = mass in grams / molar mass
n = 1.40g / 58.5g/mol
n = 0.024 mole
Now, given that:
Amount of moles of NaCl (n) = 0.024
Volume of NaCl solution (v) = 30.0mL
[Convert 30.0mL to liters
If 1000 mL = 1L
30.0mL = 30.0/1000 = 0.03L]
Concentration of NaCl solution (c) = ?
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
c = 0.024 mole / 0.03 L
c = 0.8 M (0.8M means concentration is in moles per litres)
Thus, the concentration of the solution is 0.8M
The balanced equation for the above reaction is as follows;
2C₈H₁₈ + 25O₂ ---> 16CO₂ + 18H₂O
stoichiometry of octane to CO₂ is 2:16
number of C₈H₁₈ moles reacted - 191.6 g / 114 g/mol = 1.68 mol
when 2 mol of octane reacts it forms 16 mol of CO₂
therefore when 1.68 mol of octane reacts - it forms 16/2 x 1.68 = 13.45 mol of CO₂
number of CO₂ moles formed - 13.45 mol
therefore mass of CO₂ formed - 13.45 mol x 44 g/mol = 591.8 g
mass of CO₂ formed is 591.8 g
Answer:
ooh sorry, but will this help you now:
Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in sverdrup (sv), where 1 sv is equivalent to a volume flow rate of 1,000,000 m (35,000,000 cu ft) per second.
Surface currents, which make up only 8% of all water in the ocean, are generally restricted to the upper 4…
Explanation:
Hope this helps :)