Answer:
10.8amu
Explanation:
Given parameters:
Abundance of B - 10 = 20% = 0.2
Abundance of B - 11 = 80% = 0.8
Unknown:
Atomic mass of Boron = ?
Solution:
The atomic mass of Boron can be can be calculated using the expression below;
Atomic mass = (abundance of B - 10 x mass of isotope B - 10 ) +( abundance of B - 11 x mass of isotope B- 11)
Atomic mass = (0.2 x 10) + (0.8 x 11) = 2 + 8.8 = 10.8amu
Answer:
Dry Ice is frozen CO2
Explanation:
we just need to convert the 10g into moles
Carbon has atomic mass of 12, and oxygen has atomic mass of 16, so molar mass = 12 + 16(2)= 44
Do 66/44 to get the moles = 1.5 (ans)
CH₃COOH-CH₃COO⁻ is a conjugate acid-base pair. NH₃-NH₂⁻ is another conjugate acid-base pair
<h3>Answer:</h3>
Option-B (Halide; oxide) is the correct answer.
<h3>Explanation:</h3>
<em> Halides</em> are those substances which contains negatively charged halide ion i.e. X⁻.
Examples: F⁻ (Fluoride) , Cl⁻ (Chloride) , Br⁻ (Bromide) , I⁻ (Iodide) e.t.c.
<em>Oxides </em>are those substances which atleast containn one Oxygen atom.
Examples: FeO (Iron Oxide), Cr₂O₃ (Chromium Oxide)
<em>Silicates</em> are those anionic substances which contains silicon and oxygen with general formula [SiO. 4−x] n.
Examples: [SiO₄]⁻⁴ (Nasosilicate) , [Si₂O₇]⁻⁶ (Sorosilicates)
<em>Carbonates </em>are those substances which contains carbonate anion i.e. CO₃²⁻.
Examples: Na₂CO₃ (Sodium Carbonate) , MgCO₃ (Magnesium Carbonate)
<h3>Conclusion:</h3>
As in NaCaAlF, F⁻ is present hence, it is an Halide and the presence of O in FeCrO makes it Oxide.