Answer:
2578.99 years
Explanation:
Given that:
100 g of the wood is emitting 1120 β-particles per minute
Also,
1 g of the wood is emitting 11.20 β-particles per minute
Given, Decay rate = 15.3 % per minute per gram
So,
Concentration left can be calculated as:-
C left =
Where,
is the concentration at time t
is the initial concentration
Also, Half life of carbon-14 = 5730 years
Where, k is rate constant
So,
The rate constant, k = 0.000120968 year⁻¹
Time =?
Using integrated rate law for first order kinetics as:
So,
<u>t = 2578.99 years</u>
Answer:
D. The rate decreases as reactants are used up.
Explanation:
Initially, the rate increases until the reaction is at equilibrium. At equilibrium, the rate is constant.
As the reaction progresses, the rate decreases to zero when reactants are used up ( for irriversible reactions only )
Answer:
I don't know 100% but im pretty sure its electrons, if im wrong im really sorry let me know in the comments ill change it
explanation
the nucleus has more weight but its more compact but the electrons are spread apart circling the nucleus and therefor take up more space
The balanced equation would be (1)BaCl2 + (1)H2SO4 --> (1)BaSO4 + (2)HCl2
Then you should know that the coefficients stand for moles.
The thing is I'm not sure if H2SO4 is 35 ml or .200 m.
Also, is this topic stoichiometry?
The total mass would be 142.05 g/mol. Since sodium is 22.99 g/mol and there are 2 sodium atoms, it would be 45.98 g/mol. Divide 45.98 by 142.05 and you get 32.37%