Answer:functional group (top row); sources in nature (bottom row)
Explanation:
Conduct experiments to see which hall Bounce the higher and see how they could collect data
In this case, we are going to assume that there are 100 atoms to make things easier.
Let R% be the abundance of n-15. With this in mind, we calculate the abundance of n-14 to be 100%-R%
14.0031*(100-R)% + 15.001 * R%= 14.00674
In this case, we can delete or ignore the % sign since we do not want to carry it around, however, we need to keep in mind that the final answer is in %
14.0031*(100-R) + 15.001 * R= 14.00674
1400.31-14.0031R+15.001R=1400.674
0.9979R=0.364
R=0.3648
Then, the abundance of n-15 is 0.3648%
we are asked in this problem to determine the mass of a liquid in a small container. In order to determine the mass, we use an analytical balance for greater accuracy by first weighing the whole system (liquid+beaker). Then transfer the liquid to another container and completely dry the beaker (wash and dry). measure the weight of the beaker. The mass of the liquid is equal to the mass of the system minus the mass of the beaker.
When heated, particles vibrate faster, thus increasing the distance between one another. The distance between these particles results in changes of state. Therefore, increased molecular motion results in expansion of an object. This works vice versa for cooling. As the vibrations slow down, the particles become closer together. This results in contraction.