Answer:

Explanation:
We are given the amounts of two reactants, so this is a limiting reactant problem.
We know that we will need moles, so, lets assemble the data in one place.
2Mg + O₂ ⟶ 2MgO
n/mol: 2 5
Calculate the moles of MgO we can obtain from each reactant.
From Mg:
The molar ratio of MgO:Mg is 2:2

From O₂:
The molar ratio of MgO:O₂ is 2:1.

It called cation, Well, When an atom gains or loses an electron, it
attains a net charge and becomes an ion. When electrons are lost, the
resulting ion is called cation and when electrons are gained, the
resulting ion is called an anion. So, Cations have a net positive
charge, while anions have a net negative charge. it is true.
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.
Answer:
kg, mg. 65.00, 65,000,000. 65.01, 65,010,000. 65.02, 65,020,000. 65.03, 65,030,000. 65.04, 65,040,000. 65.05, 65,050,000. 65.06, 65,060,000.
Explanation:
Answer : The molecular formula of a compound is, 
Solution : Given,
Mass of C = 64.03 g
Mass of H = 4.48 g
Mass of Cl = 31.49 g
Molar mass of C = 12 g/mole
Molar mass of H = 1 g/mole
Molar mass of Cl = 35.5 g/mole
Step 1 : convert given masses into moles.
Moles of C = 
Moles of H = 
Moles of Cl = 
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For Cl = 
The ratio of C : H : Cl = 6 : 5 : 1
The mole ratio of the element is represented by subscripts in empirical formula.
The Empirical formula = 
The empirical formula weight = 6(12) + 5(1) + 1(35.5) = 112.5 gram/eq
Now we have to calculate the molecular formula of the compound.
Formula used :


Molecular formula = 
Therefore, the molecular of the compound is, 