Vi = As * h = 1000 * 30 = 30,000 cm^3 = Vol. of the ice.
Vb = (Di/Dw) * Vi = (0.9/1.0) * 30,000 = 27,000 cm^3 = Vol. below surface - Vol. of water displaced.
27,000cm^3 * 1g/cm^3 = 27,000 grams = 27 kg = Mass of water displaced.
If we are being specific, the inner core has the highest density, but if not then the core in general
Answer:
<h2> 4kg</h2>
Explanation:
Step one:
given
length of rod=2m
mass of object 1 m1=1kg
let the unknown mass be x
center of mass<em> c.m</em>= 1.6m
hence 1kg is 1.6m from the <em>c.m</em>
and x is 0.4m from the <em>c.m</em>
Taking moment about the <em>c.m</em>
<em>clockwise moment equals anticlockwise moments</em>
1*1.6=x*0.4
1.6=0.4x
divide both sides by 0.4 we have
x=1.6/0.4
x=4kg
The mass of the other object is 4kg
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum
To solve this problem we will apply the expression of charge per unit of time in a capacitor with a given resistance. Mathematically said expression is given as

Here,
q = Charge
t = Time
R = Resistance
C = Capacitance
When the charge reach its half value it has passed 10ms, then the equation is,




We know that RC is equal to the time constant, then

Therefore the time constant for the process is about 14ms