When, it donates electons.
as for example take
NaCl ( sodium chloride)
it's an ionic compund,
that means it is formed by donating or gaining electrons
Na is writen first than, it must be electropositive i.e it has donated electons which made it positive and the clorine gains electron so it's electronegative.
Na is positive because
as we know it's atomic number is 11 that means it has 11 protons and 11 electrons
now, when it donate electon it has, greater number of protons whose change is +ve so the atom becomes overall positively charged ion or cation.
and something same happens in clorine and because it gains one electron and the number of electrons increase in it by 1 whise charge is -ve so, the atom becomes negatively charged ion or anion which has a -1 charge.
The correct answer is (3)
I-131 and P-32
The explanation:
according to attached table:
- we can see that the half life of p 32 is 14.28d (more than one hour)
- and the half life of I-131 is 8.021 d
(more than one hour)
and They both have β- decay mode and with half-lives greater than hour.
To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.