1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
12

A woman is applying 300N/m2 of pressure on to door with her hand. Her hand has area of 0.02m2. Work out the force being applied​

Physics
1 answer:
never [62]3 years ago
8 0

Answer:

6N

Explanation:

Given parameters:

Pressure applied by the woman  = 300N/m²

Area = 0.02m²

Unknown:

Force applied  = ?

Solution:

Pressure is the force per unit area on a body

        Pressure  = \frac{force}{area}

         Force  = Pressure x area

        Force  = 300 x 0.02  = 6N

You might be interested in
Which is a correct statement of what occurs at a turbine during electricity production?
jarptica [38.1K]

Answer:

The turbine is rotated and rotates the generator to produce electricity.

Explanation:

Within a turbine enters the superheated steam which is at high pressure and high temperature, this steam is previously formed in the boiler when the steam enters the turbine hits each one of the blades of the turbine making it rotate at a given speed, the turbine shaft is coupled to the shaft of an electric generator and thus generates electricity.

It is also important to say that when the steam comes out of the turbine comes out at low pressure, this way the internal operating process is carried out within the turbine.

4 0
3 years ago
A stone is dropped from a cliff. What will be its speed when it was fallen 100 m?
Mars2501 [29]

Answer:

final velocity will be44.72m/s

Explanation:

HEIGHT=h=100m

vi=0m/s

vf=?

g=10m/s²

by using third equation of motion for bodies under gravity

2gh=(vf)²-(vi)²

evaluating the formula

2(10m/s²)(100m)=vf²-(0m/s)²

2000m²/s²=vf²

√2000m²/s²=√vf²

44.72m/s=vf

6 0
3 years ago
Read 2 more answers
How fast would 40 Newtons of force accelerate a 2 kg object?
Digiron [165]

Answer:

20 m/s^2

Explanation:

We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

F=ma

where

F is the net force on the object

m is its mass

a is its acceleration

In this problem:

F = 40 N is the force on the object

m = 2 kg is its mass

Therefore, the acceleration of the object is

a=\frac{F}{m}=\frac{40}{2}=20 m/s^2

8 0
3 years ago
You throw a bouncy rubber ball and a wet lump of clay, both of mass m, at a wall. Both strike the wall at speed v, but while the
lana [24]

Answer:

<em>The fifth option is the correct answer: mv; 2 mv</em>

Explanation:

<u>Change of Momentum</u>

Assume an object has a momentum p1 and after some interaction it now has a momentum p2, the change of momentum is

\Delta p=p_2-p_1

The momentum is computed as

p=mv

Where m is the mass of the object and v its speed. Now let's analyze the situation of both the ball and the clay.

The clay has an initial speed v and a mass m, thus its initial momentum is

p_1=mv

When it hits the wall, it sticks, thus its final speed is 0 and

p_2=0

The change of momentum is

\Delta p=0-mv=-mv

The absolute change is mv

Now for the ball, the initial condition is the same as it was for the clay, but the ball hits back at the same speed, thus its final momentum is

p_2=-mv

The change of momentum is

\Delta p=-mv-mv=-2mv

The absolute change is 2mv

The fifth option is the correct answer: mv; 2 mv

3 0
4 years ago
A 25.0-kg child is standing at the edge of a horizontal merry-go-round with a radius of 2.40 m and a moment of inertia of 356 kg
motikmotik

Answer:

\omega_{f}=1.634\ rad/s  

Explanation:

given,  

diameter of merry - go - round = 2.40 m  

moment of inertia = I = 356 kg∙m²

speed of the merry- go-round = 1.80 rad/s

mass of child = 25 kg  

initial angular momentum of the system  

L_i = I\omega_i  

L_i =356\times 1.80  

L_i =640.8\ kg.m^2/s  

final angular momentum of the system  

L_f = (I_{disk}+mR^2)\omega_{f}  

L_f = (356 + 25\times 1.2^2)\omega_{f}  

L_f= (392)\omega_{f}  

from conservation of angular momentum  

L_i = L_f  

640.8= (392)\omega_{f}  

\omega_{f}=1.634\ rad/s  

8 0
3 years ago
Read 2 more answers
Other questions:
  • __________ is best described as the process of transformation of an idea into a new product orprocess, or the modification and r
    5·2 answers
  • A rock is thrown across a frozen pond with an initial speed of 8m/s. Which statement best describes the motion of the rock?
    10·1 answer
  • A biological community is made up of all the
    9·1 answer
  • In his famous experiment, Rutherford fired alpha particles at a thin gold film. Most of the alpha particles went through the fir
    9·1 answer
  • I need these for test corrections that are due tomorrow please :)
    14·1 answer
  • What is the wavelength of a wave with a frequency of 330 Hz and a speed of
    12·1 answer
  • WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!
    11·1 answer
  • Can I apply my homework questions about physic?
    7·2 answers
  • 6) A ball free falls from the top of the roof for 5 seconds. How far did it fall? What is its final
    15·1 answer
  • One long wire lies along an x axis and carries a current of 39 A in the positive x direction. A second long wire is perpendicula
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!