<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 
<span>The relationship between wavelength, frequency and energy of Electromagnetic Radiation is given by
E = hf = hc/lamba -------(1)
So from (1) there's a linear relationship between E and f. The higher the frequency, f, the higher the energy E.
Also from (1) it is obvious that the lower the wavelength, lambda, the higher the energy, E.
This means the answer is D.</span>
I believe the correct answer from the choices listed above is option D. During the condensing phase that the <span>arrangement of water molecules become more orderly. Condensation is the phase change from gas to liquid. Liquid molecules has more order than the gas state. Hope this answers the question.</span>
Answer: The current flowing through the circuit is 0.01A (or 10 mA)
Explanation:
Use Ohm's Law:

Given the values of U=30V and R=3000Ohm:
