The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:

Explanation:
Initial speed of the electron, u = 0
The charge per unit area of each plate, 
Separation between the plates, 
An electron is released from rest, u = 0
Using equation of kinematics,
..........(1)
Acceleration of the electron in electric field,
............(2)
Electric field,
............(3)
From equation (1), (2) and (3) :


v = 10840393.1799 m/s
or

So, the electron is moving with a speed of
before it reaches the positive plate. Hence, this is the required solution.
Answer:
a. blue light
Explanation: hope this helps :)
When the truck's weight is added to the boat, the boat sinks 5 cm deeper,
and displaces additional water whose weight is equal to the weight of the
truck.
The volume of the additional displaced water is
(3.9 m) x (6.3 m) x (5.0 cm)
= (3.9 m) x (6.3 m) x (0.05 m) = 1.2285 m³ .
The weight of that much water is the weight of the truck.
Mass of 1 liter of water = 1 kilogram
1.2285 m³ = 1,228.5 liters = 1,228.5 kg of water.
Weight = (mass) x (gravity)
= (1,228.5 kg) x (9.8 m/s²) = 12,039 Newtons.
(about 2,708 pounds)