Answer:Fg = mg however newtons second law states that the net force acting on an object is equal to it's mass times it's acceleration so what allows us to say that Fg = mg because certainly not for every single situation the net force is going to equal to the force of gravity please explain... what allows us to say Fg = mg
Source https://www.physicsforums.com/threads/fg-mg-questioned.336776/
Explanation:
What that means is the atom is so radioactive that the nucleus is unstable.
Well formation of metallic bond depends on free electrons.smaal sized atoms hold their electrons more firmly as compared to large size atoms ,this z due to distance of outer shell electrons by nucleus..in this way no of free electrons affect strength of metallic bond..smaal sized atoms release less free electrons..
Answer:
The batteries would be connected in series while the bulbs would be connected in parallel
Explanation:
Power (W) = VI
where V = voltage, I = current and R = resistance
from V = IR , I = V/R
Power (W) now becomes = V (V/R) = 
Power (W) = 
from the above equation, power is directly dependent on voltage, hence the voltage has to be high for the power to be high and the power is also inversely dependent on the resistance (in this case the bulbs which act as the load)
- We have to batteries, when batteries are connected in series the total voltage becomes the summation of the two voltages hence giving a higher voltage and when they are connected in parallel their voltage remains the same. Since we want to get higher voltage we will connect the two batteries in series.
- we have two bulbs which are the resistance here, from the equation above the power is inversely dependent on the resistance so we would need its value to be minimal. When resistance is connected in series the resistance individual will be added to get the total resistance, hence the total resistance will be high but when the resistors are arranged in parallel you get the total resistance by applying the formula
which will give us a lower resistance. Hence we would connect the bulbs in parallel.
Take note that the power from this connection should not exceed the bulbs power rating so as to avoid damage of the bulbs.