Answer:
The Answer is 2,86 grs Na2CO3
Explanation:
What we have to do is find the mass of Na2CO3 as a pure component or solute. That's because the 11,8 mL are a solution of Na2CO3. This means, the sum between the solute Na2CO3 and water. To find the grams of Na2CO3 as pure component we create a factor series as is shown in the attached file.
Data:
Density of solution (ρ) = 1,10 grs sln Na2CO3/mL sln Na2CO3
Mass Percentage (%) = 22 grs Na2CO3/100 grs sln Na2CO3
The procedure is explained in the attached file
Answer:
Explanation:
Equation of the reaction:
NaOH + HCl --> NaCl + H2O
Volume of HCl = 5 ml
Molar concentration = 1 M
Number of moles = molar concentration * volume
= 1 * 0.005
= 0.005 mol of HCl
By stoichiometry, 1 mole of HCl completely neutralizes 1 mole of NaOH
Therefore, number of moles of NaOH = 0.005 mol
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
NaOH --> Na+ + OH-
Mass = molar mass * number of moles
= 40 * 0.005
= 0.2 g of Na+
Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³
Answer:
The nuclear decay of radioactive elements is a process that is a useful tool for determining the absolute age of fossils and rocks. It is used as a clock, in which daughter elements or isotopes converted from parent isotopes by decaying at a particular time.
Radioactive decay rates are constant and do not change over time. It is measured in half-life. A half-life is a time it takes half of a parent isotope to decay and converted into a stable daughter isotope. How many parent isotopes and daughter isotopes present in the fossil or their abundance can help in determining the age of fossil or rock.