So let's convert this amount of mL to grams:

Then we need to convert to moles using the molar weight found on the periodic table for mercury (Hg):

Then we need to convert moles to atoms using Avogadro's number:
![\frac{6.022*10^{23}atoms}{1mole} *[8.135*10^{-2}mol]=4.90*10^{22}atoms](https://tex.z-dn.net/?f=%20%5Cfrac%7B6.022%2A10%5E%7B23%7Datoms%7D%7B1mole%7D%20%2A%5B8.135%2A10%5E%7B-2%7Dmol%5D%3D4.90%2A10%5E%7B22%7Datoms%20)
So now we know that in 1.2 mL of liquid mercury, there are
present.
In order to find molarity, you must first find the number of moles that was dissolved.
Now, Moles = Mass ÷ Molar Mass
⇒ Moles of NaCl = 2.922 g ÷ 58.44 g/mol
= 0.05 moles
∴ the Molarity of the NaCl is 0.05 M [Option 1]
Answer:
atoms or molecules
Explanation:
Gas particles are constantly bumping into each other and the borders of their container.