Hey!
First, let's write the problem.

Subtract the numbers, we would do the following operation,


Add 2 to both sides.

This tells us that our final answer would be,

Thanks!
-TetraFish
Answer:
Answer explained below
Explanation:
(a) The rays are diverging near the lens. They change the direction when they passed through the converging lens
(b) If the light rays don't bend they will move away from the optical (principal axis) as the other waves are moving.
(c) If we decrease the distance between lens and light source, most of the rays diverge and no ray converges on the screen even after passing through the lens. Here is a screenshot.
Answer:

Explanation:

The law of gravitation

Universal gravitational constant [S.I. units]

Mass of Earth [S.I. units]

Mass of a man in a spacecraft [S.I. units]

Earth radius [km]
Distance between man and the earth's surface
![h=261 \mathrm{~km} \quad[\mathrm{~km}]](https://tex.z-dn.net/?f=h%3D261%20%5Cmathrm%7B~km%7D%20%5Cquad%5B%5Cmathrm%7B~km%7D%5D)
ESULT 

Answer:
0°
Explanation:
The angle between force and displacement should be 0° in order to get the maximum work done.
Work done = Force x dcosФ°
Ф is the angle between force and displacement
When Ф is zero, the maximum work done is attained
When Ф is 90, the minimum work is done, in fact, work done is 0
If the length and linear density are constant, the frequency is directly proportional to the square root of the tension.