Hello!
Charging by conduction involves the contact of a charged object to a neutral object. Suppose that a positively charged aluminum plate is touched to a neutral metal sphere. The neutral metal sphere becomes charged as the result of being contacted by the charged aluminum plate.
Hope this helped!
Phase 1. Forethought/preaction—This phase precedes the actual performance; sets the stage for action; maps out the tasks to minimize the unknown; and helps to develop a positive mindset. Realistic expectations can make the task more appealing. Goals must be set as specific outcomes, arranged in order from short-term to long-term. We have to ask students to consider the following:
<span>When will they start?Where will they do the work?How will they get started?<span>What conditions will help or hinder their learning activities are a part of this phase?
</span></span>
Phase 2. Performance control—This phase involves processes during learning and the active attempt to utilize specific strategies to help a student become more successful.
We have to ask students to consider the following:
<span>Are students accomplishing what they hoped to do?Are they being distracted?Is this taking more time than they thought?Under what conditions do they accomplish the most?What questions can they ask themselves while they are working?<span>How can they encourage themselves to keep working (including self-talk—come on, get your work done so you can watch that television show or read your magazine!)
</span></span>
Phase 3. Self-reflection—This phase involves reflection after the performance, a self-evaluation of outcomes compared to goals.
We have to ask students to consider the following:
<span>Did they accomplish what they planned to do?Were they distracted and how did they get back to work?Did they plan enough time or did they need more time than they thought?<span>Under what conditions did they accomplish the most work.
Hope this helps!!!!!
</span></span>
Answer:
She run for, t = 0.92 s
Explanation:
Given data,
The velocity of the runner, v = 10 km/h
The distance covered by the runner, d = 9.2 km
The relationship between the velocity, displacement and time is given by the formula,
t = d / v
Substituting the given values in the above equation,
t = 9.2 / 10
= 0.92 s
Hence, she ran for, t = 0.92 s
Blue light will bend more than the others because it has a slightly greater refractive index. This is because blue light has a shorter wavelength and more energy, meaning it has to slow down more than the others when it hits the water.
Explanation:
Assuming the wall is frictionless, there are four forces acting on the ladder.
Weight pulling down at the center of the ladder (mg).
Reaction force pushing to the left at the wall (Rw).
Reaction force pushing up at the foot of the ladder (Rf).
Friction force pushing to the right at the foot of the ladder (Ff).
(a) Calculate the reaction force at the wall.
Take the sum of the moments about the foot of the ladder.
∑τ = Iα
Rw (3.0 sin 60°) − mg (1.5 cos 60°) = 0
Rw (3.0 sin 60°) = mg (1.5 cos 60°)
Rw = mg / (2 tan 60°)
Rw = (10 kg) (9.8 m/s²) / (2√3)
Rw = 28 N
(b) State the friction at the foot of the ladder.
Take the sum of the forces in the x direction.
∑F = ma
Ff − Rw = 0
Ff = Rw
Ff = 28 N
(c) State the reaction at the foot of the ladder.
Take the sum of the forces in the y direction.
∑F = ma
Rf − mg = 0
Rf = mg
Rf = 98 N