The temperature increase of a substance is T=Q/m*c, where m is the mass, Q is the energy absorbed and c is the specific heat. So you can conclude that if the lead gets to a higher temperature, it must have a lower specific heat
Answer:

Explanation:
Let the distance from spotlight to wall be 15m, and distance from the man to the building be
.
#Therefore the height of the shadow as a function of the above is 
Hence, height of the shadow is expressed as s=(15-x)m
#See attached photo for illustration
Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
Nichrome wire. That's the stuff that toasters are made from. The resistance is pretty high, considering the diameter. 1 meter is at about the same guage as that listed below for copper is about 96 ohms.
Most of the time you are trying to use wire with the least resistance.
A meter of copper has a listed resistance of 0.024 ohms / meter. The wire is a 19 guage wire which makes it pretty thin.
===============
I'm not sure what you are asking. If want the resistance of something in terms of what would increase the resistance of the same material for both calculations then
Rule 1: It you decrease the wire diameter, you increase the resistance
Rule 2: If you increase the length of the wire, you increase the resistance.
Both rules assume you are using something like copper.
Answer:
It releases some of the energy into the atmosphere as hot steam.
Explanation: