The y-component of the stone's velocity when it is 8 m below the hand is 14.86 m / s
v² = u² + 2 a s
s = Displacement
u = Initial velocity
a = Acceleration
u = 8 m / s
s = 8 m
v² = 8² + 2 * 9.8 * 8
v² = 64 + 156.8
v = √ 220.8
v = 14.86 m / s
The equation used to solve the problem is an equation of motion. These equations are designed to locate an object in motion using components such as velocity, displacement, acceleration and time.
Therefore, the y-component of the stone's velocity is 14.86 m / s
To know more about Equations of motion
brainly.com/question/5955789
#SPJ1
How do you ask a question but don’t know the answer we will never know
D. Light as light is a wave
Answer:
Part a)

Part b)

Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Explanation:
Part a)
Let say the collision between Moose and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part b)
Let say the collision between Camel and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass