The moon is talking to thecat at night that’s why
Make the base of the building zero. Then the initial distance is 100m, final distance unknown x. Use gravity, time and initial velocity to solve for final distance.
x - 100 = (0)(5) +(1/2)(-9.81)(5^2)
x - 100 = 0 - 122.625
x = -122.625 + 100
x = -22.625 m below ground
The word that could fit to this is Text Mining. This word also referred to as text data mining, roughly equivalent to text analytics, a process of deriving high-quality information from text. This high quality information derived through the devising of patterns and trends through means such as statistical patter learning.
Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
no BECQUSE POSUM BROOB SHSHSJ