The geosphere is about 99.94% of Earth's mass, so C is the answer.
"The uncertainty<span> in </span>velocity<span> is Δv=1.05⋅105m/s . According to the Heisenberg </span>Uncertainty<span> Principle, you cannot measure simultaneously with great precision both the momentum and the position of a particle. m - the mass of an electron - 9.10938⋅10−31kg."
-socratic.com</span>
Answer:
0.171 M
Explanation:
Step 1: Given data
- Mass of H₃PO₄ (solute): 3.35 g
- Volume of solution (V): 200 mL
Step 2: Calculate the moles of solute
The molar mass of H₃PO₄ is 97.99 g/mol.
3.35 g × 1 mol/97.99 g = 0.0342 mol
Step 3: Convert "V" to liters
We will use the conversion factor 1 L = 1000 mL.
200 mL × 1 L/1000 mL = 0.200 L
Step 4: Calculate the molarity of the solution
We will use the definition of molarity.
M = moles of solute / liters of solution
M = 0.0342 mol/0.200 L = 0.171 M
A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
<h3>What is One Calorie ?</h3>
The amount of heat energy required to raise the temperature by 1 gram of water through 1°C is known as One Calorie.
1 Calorie = 4.18 J
Thus from the above conclusion we can say that A Calorie unit used in food is equal to the amount of energy necessary to raise the temperature of 1 kilogram of water by <u>1</u> degrees Celsius.
Learn more about the One calorie here: brainly.com/question/1061571
#SPJ4
Answer:
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. ... The limiting reagent is the one that is totally consumed; it limits the reaction from continuing because there is none left to react with the in-excess reactant.
Explanation:
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. ... The limiting reagent is the one that is totally consumed; it limits the reaction from continuing because there is none left to react with the in-excess reactant.