Answer:
Approximately
.
Approximately
. (assumption: the LED here is an Ohmic resistor.)
Explanation:
The two resistors here
and
are connected in parallel. Their effective resistance would be equal to
.
The current in a serial circuit is supposed to be the same everywhere. In this case, the current through the LED should be
. That should also be the current through the effective
resistor. Make sure all values are in standard units. The voltage drop across that resistor would be
.
The voltage drop across the entire circuit would equal to
- the voltage drop across the resistors, plus
- the voltage drop across the LED.
In this case, that value would be equal to
. That's the voltage that needs to be supplied to the circuit to achieve a current of
through the LED.
Assuming that the LED is an Ohmic resistor. In other words, assume that its resistance is the same for all currents. Calculate its resistance:
.
The resistance of a serial circuit is equal to the resistance of its parts. In this case,
.
Again, the current in a serial circuit is the same in all appliances.
.
Answer:
Explanation:
Let the velocity of rocket case and payload after the separation be v₁ and v₂ respectively. v₂ will be greater because payload has less mass so it will be fired with greater speed .
v₂ - v₁ = 910
Applying law of conservation of momentum
( 250 + 100 ) x 7700 = 250 v₁ + 100 v₂
2695000 = 250 v₁ + 100 v₂
2695000 = 250 v₁ + 100 ( 910 +v₁ )
v₁ = 7440 m /s
v₂ = 8350 m /s
Total kinetic energy before firing
= 1/2 ( 250 + 100 ) x 7700²
= 1.037575 x 10¹⁰ J
Total kinetic energy after firing
= 1/2 ( 250 x 7440² + 100 x 8350² )
= 1.0405325 x 10¹⁰ J
The kinetic energy has been increased due to addition of energy generated in firing or explosion which separated the parts or due to release of energy from compressed spring.
Answer:
a)6.67 m/s2
b)16.7 rad/s2
c)increasing angular acceleration
Explanation:
a) It's because the system is not just mass of the man, it consists of the man holding a rope wrapped around a cylinder, not just a man free falling. So you would have to consider the rotating cylinder under the torque created by the man gravity force.
Let g = 10m/s2
T = mgd =75*10*0.4 = 300 N.m
The from the mass moments inertial of the solid cylinder:

we can calculate the angular acceleration of the cylinder:

then translate that to acceleration:

c) if the mass of the rope is not neglected, that means the force of gravity increases as the rope unwrapping around the cylinder, so the torque increases. Also the moment of inertial of the rope-cylinder system decreases due to rope unwrapping. In the end, the angular acceleration is no longer constant, but increasing.
A. Triangular
This is not commonly found as a shape in a galaxy
funny of u to assume I have friends
If I remember anything from that part of my education (not great at physics) I'd say the answer is A, though I admit i'm not 100% sure
I dunno how to explain, once it hits that's the energy that was converting I guess.