Answer:
°C
Explanation:
= mass of the horseshoe = 0.35 kg
= mass of the water = 1.40 L = 1.40 kg
= mass of the iron pot = 0.45 kg
= specific heat of iron = 450 J kg⁻¹ °C⁻¹
= specific heat of water = 4186 J kg⁻¹ °C⁻¹
= initial temperature of the horseshoe = ?
= initial temperature of the water = 22 °C
= initial temperature of the iron pot = 22 °C
= final temperature = 32 °C
Using conservation of Heat
°C
Answer:
Please mark as Brainliest!!
Explanation:
Explanation:
In a chemical formula, the symbols for each element in the compound are followed by subscripts that tell us how many of that element are in the compound.
For an example, let's look at the the formula for compound glucose:
C
6 H
12 O
6
________
The subscripts that follow each element's symbol indicate how many of that element are in the compound.
Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet,
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :
M is the mass of the sun
T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
Hey how's your day going
I hope after I answer that you understand and don't just paste my answer into your assignment!!! (<- read!!!)
Answer \|/
Ice is less dense than water.
Reason why \|/
When water freezes the molecules inside completely stop moving (They still vibrate but don't change their position much). In doing so, they spread out a touch which makes it less dense than liquid water. So ice floats