<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;


- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
These types of molecules are called hydrates. They have a certain number of moles attached to the salt. Their characteristic is being hygroscopic. That means that when they are exposed to air, they readily solvate.
The formula for Manganese Fluoride Decahydrate will involve the formula Mn, F and H₂O. In ionic form, Manganese is Mn⁺² while fluoride is in F⁻. When they are brought together, their superscripts are 'cross-multiplied' and becomes their respective subscripts. The compound becomes MnF₂. Then, we add the decahydrate which means 10 moles of H₂O. Hence, the formula for Manganese Fluoride Decahydrate is MnF₂*10H₂O.
CaCl2 and KCl are both salts which dissociate in water
when dissolved. Assuming that the dissolution of the two salts are 100 percent,
the half reactions are:
<span>CaCl2 ---> Ca2+ + 2 Cl-</span>
KCl ---> K+ + Cl-
Therefore the total Cl- ion concentration would be coming
from both salts. First, we calculate the Cl- from each salt by using stoichiometric
ratio:
Cl- from CaCl2 = (0.2 moles CaCl2/ L) (0.25 L) (2 moles
Cl / 1 mole CaCl2)
Cl- from CaCl2 = 0.1 moles
Cl- from KCl = (0.4 moles KCl/ L) (0.25 L) (1 mole Cl / 1
mole KCl)
Cl- from KCl = 0.1 moles
Therefore the final concentration of Cl- in the solution
mixture is:
Cl- = (0.1 moles + 0.1 moles) / (0.25 L + 0.25 L)
Cl- = 0.2 moles / 0.5 moles
<span>Cl- = 0.4 moles (ANSWER)</span>
Answer:
When the batter hits the ball, there is a force applied, and energy is transferred. The ball will move in the direction the force is pushing it. If two objects collide, energy will be transferred between both, and there will be a change in motion.
Explanation: