Answer:
The balanced equation is 2K(s) + Cl2(g)→2KCl(s)
Answer:
Because it went through a chemical change which changes its atomic form
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
Ionic compounds<span> in solution react </span>faster<span> than molecular </span>compounds<span>. This </span>is <span>because </span>Ionic compounds<span> break apart to form free </span>ions. Therefore, there are no bonds<span> to break </span>so<span> the </span><span>reaction is fast</span>