Answer:
joule
Explanation:
Let m = mass of the car and v1 = initial velocity and v2 = final velocity
Given.
Initial velocity = 100 km/h
final velocity = 50 km/h
What is work done in the car to slow it from 100km/h to 50km/h?


The work done in the car to slow it from v1 to v2.
w=Δk






joule.
Therefore, the work done is
joule
Answer: 510 m/s
Explanation: specific gravity of steam is 18/29 = 0.620
It is the ratio of the density of steam over density of water
400m3/s of steam =
400m3ms * 0.620 of water
= 248m3/s of water
Total flow rate Q = 248 + 7 = 255m3/s
Using Q = AV
Where A is area and V is velocity
V = Q/A
V = 255/0.5 = 510m/s
Answer:
Speed of lighter ball is 4 m/s.
Explanation:
Applying the principle of conservation of linear momentum,
momentum before collision = momentum after collision.

+
= 
- 

= 3 kg,
= 8 m/s,
= 2 kg,
= 0 m/s ( since it is at rest),
= 2 m/s,
= ?
(3 x 8) + (2 x 0) = (8 x 2) - (2 x
)
24 + 0 = 16 - 2
2
= 16 - 24
2
= -8
= 
= -4 m/s
This implies that the light ball moves at the speed of 4 m/s in the opposite direction of the heavier ball after collision.
Static friction opposes the movement of car from the state of rest.
Dynamic or kinetic friction opposes the movement of the car when car is running at any speed.
Answer: <u>In a divergent plate boundary</u>, seafloor spreading taking place. It leads to the formation of oceans as new materials are added here along the mid-oceanic ridge. There occur volcanism and shallow-focus earthquakes.
<u>In a convergent plate boundary</u>, two plates collide to form high mountain belts and also volcanic eruptions take place. There occur long chains of volcanic as well as island arcs, in association with deep-focus earthquakes.
<u>In a transform plate boundary</u>, two plates slide past each other, conserving the plates. Shallow-focus earthquakes are generated here.
The earth has experienced various geological processes, such as weathering and erosion of rocks, earthquakes, volcanic eruptions, mass extinction events, plate tectonic movements and many more. These continuous processes have configured the present shape of the earth's surface.
For example, the breaking up of the supercontinent Pangea divided into Laurasia and Gondwanaland and subsequently formed the present scenario. This separation of continents has taken place due to the convection current that generates in the mantle.