<span>7.7 m/s
First, determine the acceleration you subject the sled to. You have a mass of 15 kg being subjected to a force of 180 N, so
180 N / 15 kg = 180 (kg m)/s^2 / 15 kg = 12 m/s^2
Now determine how long you pushed it. For constant acceleration the equation is
d = 0.5 A T^2
Substitute the known values getting,
2.5 m = 0.5 12 m/s^2 T^2
2.5 m = 6 m/s^2 T^2
Solve for T
2.5 m = 6 m/s^2 T^2
0.41667 s^2 = T^2
0.645497224 s = T
Now to get the velocity, multiply the time by the acceleration, giving
0.645497224 s * 12 m/s^2 = 7.745966692 m/s
After rounding to 2 significant figures, you get 7.7 m/s</span>
Answer:
The correct option is a
Explanation:
From the question we are told that
The mass of the block is 
The height of the vertical drop is 
Generally from the law of energy conservation , the potential energy at the top of the slide is equal to the kinetic energy at the point after sliding this can be mathematically represented as

i.e 
=> 
=> 
=> 
i have no clue, sorry. jus tryna get points
Helium has only 2 electrons in it's valence shell
So, option D is your answer.
Hope this helps!
<span>When light passes through a prism it is separated into its component colors</span>