1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
14

Why does atmospheric pressure decrease with altitude.

Physics
1 answer:
ella [17]3 years ago
5 0

Answer:

<em>Earth's gravity pulls air as close to the surface as possible. ... As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level. This is what meteorologists and mountaineers mean by "thin air." Thin air exerts less pressure than air at a lower altitude.</em>

You might be interested in
A night-light uses 3 W.If the voltage is 120 V, what is the current? A.0.025A B.40 A C.360A D.0.25A
Tomtit [17]
The answer to this question is A. 



6 0
3 years ago
The car salesman tells you that the car can go from a stop position to 60 mph in six seconds is giving you the car’s rate of
slava [35]
The salesman is telling you the average magnitude of the car's acceleration.

| Acceleration | = (change in speed) / (time for the change)

| Acceleration | = (60 mi/hr) / (6 sec)

| Acceleration | =  10 miles/hr-sec

That would be 36,000 miles per hour squared,
or 0.0028 mile per second squared.
5 0
4 years ago
A chicken crosses a 7.50 m wide road at a constant speed of 0.367 m/s. How much time does it take to cross (in seconds)?
mars1129 [50]
<h3><u>Answer;</u></h3>

= 20.436 seconds

<h3><u>Explanation;</u></h3>

Speed = Distance × time

Therefore;

Time = Distance/speed

Distance = 7.50 m, speed = 0.367 m/s

Time = 7.50/0.367

         <u>= 20.436 seconds </u>

7 0
3 years ago
Read 2 more answers
A group of runners complete a 26.2 mile marathon in 3.4 hours. The distance between the start and finish lines is 12.2 miles. Wh
NNADVOKAT [17]

26.2/3.4 would be the average velocity for the run.

7.7 miles/hr

8 0
3 years ago
Read 2 more answers
A 54 kg person stands on a uniform 20 kg, 4.1 m long ladder resting against a frictionless wall.
SVETLANKA909090 [29]

A) Force of the wall on the ladder: 186.3 N

B) Normal force of the ground on the ladder: 725.2 N

C) Minimum value of the coefficient of friction: 0.257

D) Minimum absolute value of the coefficient of friction: 0.332

Explanation:

a)

The free-body diagram of the problem is in attachment (please rotate the picture 90 degrees clockwise). We have the following forces:

W=mg: weight of the ladder, with m = 20 kg (mass) and g=9.8 m/s^2 (acceleration of gravity)

W_M=Mg: weight of the person, with M = 54 kg (mass)

N_1: normal reaction exerted by the wall on the ladder

N_2: normal reaction exerted by the floor on the ladder

F_f = \mu N_2: force of friction between the floor and the ladder, with \mu (coefficient of friction)

Also we have:

L = 4.1 m (length of the ladder)

d = 3.0 m (distance of the man from point A)

Taking the equilibrium of moments about point A:

W\frac{L}{2}sin 21^{\circ}+W_M dsin 21^{\circ} = N_1 Lsin 69^{\circ}

where

Wsin 21^{\circ} is the component of the weight of the ladder perpendicular to the ladder

W_M sin 21^{\circ} is the component of the weight of the man perpendicular to the ladder

N_1 sin 69^{\circ} is the component of the normal  force perpendicular to the ladder

And solving for N_1, we find the force exerted by the wall on the ladder:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{mg}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+Mg\frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{(20)(9.8)}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+(54)(9.8)\frac{3.0}{4.1}\frac{sin 21^{\circ}}{sin 69^{\circ}}=186.3 N

B)

Here we want to find the magnitude of the normal force of the ground on the ladder, therefore the magnitude of N_2.

We can do it by writing the equation of equilibrium of the forces along the vertical direction: in fact, since the ladder is in equilibrium the sum of all the forces acting in the vertical direction must be zero.

Therefore, we have:

\sum F_y = 0\\N_2 - W - W_M =0

And substituting and solving for N2, we find:

N_2 = W+W_M = mg+Mg=(20)(9.8)+(54)(9.8)=725.2 N

C)

Here we have to find the minimum value of the coefficient of friction so that the ladder does not slip.

The ladder does not slip if there is equilibrium in the horizontal direction also: that means, if the sum of the forces acting in the horizontal direction is zero.

Therefore, we can write:

\sum F_x = 0\\F_f - N_1 = 0

And re-writing the equation,

\mu N_2 -N_1 = 0\\\mu = \frac{N_1}{N_2}=\frac{186.3}{725.2}=0.257

So, the minimum value of the coefficient of friction is 0.257.

D)

Here we want to find the minimum coefficient of friction so the ladder does not slip for any location of the person on the ladder.

From part C), we saw that the coefficient of friction can be written as

\mu = \frac{N_1}{N_2}

This ratio is maximum when N1 is maximum. From part A), we see that the expression for N1 was

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{d}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}

We see that this quantity is maximum when d is maximum, so when

d = L

Which corresponds to the case in which the man stands at point B, causing the maximum torque about point A. In this case, the value of N1 is:

N_1 = \frac{W}{2}\frac{sin 21^{\circ}}{sin 69^{\circ}}+W_M \frac{L}{L}\frac{sin 21^{\circ}}{sin 69^{\circ}}=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{W}{2}+W_M)

And substituting, we get

N_1=\frac{sin 21^{\circ}}{sin 69^{\circ}}(\frac{(20)(9.8)}{2}+(54)(9.8))=240.8 N

And therefore, the minimum coefficient of friction in order for the ladder not to slip is

\mu=\frac{N_1}{N_2}=\frac{240.8}{725.2}=0.332

Learn more about torques and equilibrium:

brainly.com/question/5352966

#LearnwithBrainly

7 0
3 years ago
Other questions:
  • A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .Part A. Calcualte the coil's self-i
    8·1 answer
  • Why is it so important to follow classroom procedures?
    8·1 answer
  • Which of the following has the largest momentum?
    9·1 answer
  • A spring scale calibrated in kilograms is used to determine the density of a rock specimen. The reading on the spring scale is 0
    15·1 answer
  • An incandescent light bulb produces light when electrons flow through the
    15·2 answers
  • A book weighing 5 N rests on top of a table. 1) A downward force of magnitude 5 N is exerted on the book by the force of
    12·1 answer
  • What is an earthquake​
    8·2 answers
  • Brlan is repairing an old alarm clock. He needs to replace a device that converts the electric energy into sound energy. Which o
    5·1 answer
  • Air in a thundercloud expands as it rises. If its initial temperature is 292 K and no energy is lost by thermal conduction on ex
    7·1 answer
  • A spring is stretched 5 cm from its equilibrium position. If this stretching requires 30 J of work,
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!